天津公务员考试行测数量关系,多者合作问题如何解?

2023-03-15 天津公务员考试网

天津市考行测技巧
 
  公务员行测考试中工程问题在是常考题型之一,也是比较容易得分的题型,而在工程问题中有一类多者合作问题,涉及到多个合作主体,合作完成某一项工程或几项工程。首先我们应该明确合作效率=各效率的和,其次工作总量=各部分工作量之和。接下来,小编通过几道例题去看一下如何用特值法解决多者合作问题,相信大家一定会有所收获。

 数量关系例题讲解

  一、已知多个主体完工时间,将工作总量设为多个完工时间的最小公倍数

  例1、某项工程,甲施工队单独干需要30天才能完成,乙施工队需要40天才能完成。甲、乙合作干了10天,因故停工10天,再开工时甲、乙、丙三个施工队一起工作,再干4天就可全部完工。那么,丙队单独干需要大约(    )天才能完成这项工程?

  A.21

  B.22

  C.23

  D.24

  【解析】B。已知多个主体完工时间,通过特值法设工作总量为甲乙完工时间的最小公倍数120,由工作效率=工作总量÷工作时间可得,甲的效率为4,乙的效率为3,设丙的工作效率为x,则工作总量为:10×(3+4)+4×(3+4+x)=120,解得x=5.5,则丙单独完成该工程,需要120÷5.5≈21.8天,即需要22天,故正确答案选B。

  二、已知多个主体效率关系时,根据效率关系将效率设为最简比的数值

  例2、甲工程队与乙工程队的效率之比为4:5,一项工程由甲工程队先单独做6天,再由乙工程队单独做8天,最后由甲、乙两个工程队合作4天刚好完成,如果这项工程由甲工程队或乙工程队单独完成,则甲工程队所需天数比乙工程队所需天数多多少天?

  A.3

  B.4

  C.5

  D.6

  【解析】C。根据题干甲乙工程队的效率之比为4:5,直接设甲、乙工程队效率分别为4和5,则总工作量=6×4+8×5+4×(4+5)=100,甲单独完工需要100÷4=25天,乙单独完工需要100÷5=20天,所求为25-20=5天。故正确答案选C。

  三、已知多个主体效率相同时,设每个主体的效率为1

  例3、一批零件,有3台效率相同的机器同时生产,需用10天完成。生产了2天后,车间临时接到工厂通知,这批零件需要提前2天完成,若每台机器的效率不变,需要再投入多少台相同的机器?

  A.1

  B.2

  C.3

  D.4

  【解析】A。根据题干描述3台机器效率相同,将每台机器每天的工作效率设为1,则工作总量为1×3×10=30,生产两天后,剩余的工作量为30-1×3×2=24,又需要提前2天完工,则剩余工作量的完工时间就是10-2-2=6,因此剩余工作每天的工作效率为24÷6=4,由于每台机器每天效率为1,故需要再投入1台机器。正确答案选择A。

天津市考行测资料查看

  点击查看:天津公务员考试行测言语理解网络信息 

  点击查看:天津公务员考试行测数量关系网络信息 

  点击查看:天津公务员考试行测判断推理网络信息 

  点击查看:天津公务员考试行测资料分析网络信息 

天津公务员快速提分手册(点击订购)

上架啦!

分享到

切换频道