2024年天津省考行测技巧:数量关系,记住年龄差不变

2024-03-08 天津公务员考试网

  \ 天津公务员行测数量关系技巧   
   
  很多考生在行测数量关系学习过程中可能都会接触到这么一类看似熟悉但又陌生的问题—— 数量关系。今天小编给大家介绍一下什么是 数量关系? 数量关系又该如何去求解极值?
\ 数量关系例题讲解 
 
 数量关系,记住年龄差不变

  年龄问题中随着时间发生变化,年龄在增长,年龄的倍数会变化,但是年龄差始终不变,而且年龄差相等一直也是解决年龄问题的关键所在。解决年龄问题主要的解题方法有直接分析法、方程法等,其中以方程法应用最多。解决这类问题时,如果题目中给了等量关系的话,就直接用,如果题目当中没有明确等量关系,就直接可以使用年龄差不变作为等式进行解题。

  例题1:父亲今年44岁,儿子今年16岁,当父亲的年龄是儿子的年龄的8倍时,父子的年龄和是多少?

  A.36

  B.54

  C.99

  D.162

  解析:父子的年龄差是一个不变量,二者的年龄差为44-16=28岁。因此,当父亲的年龄是儿子的8倍时,年龄差是儿子年龄的7倍,儿子的年龄为28÷7=4岁,此时父子的年龄和为4×(8+1)=36岁。

  例题2:在一个家庭中有爸爸、妈妈、女儿和儿子。现在把所有成员的年龄加在一起是77岁,爸爸比妈妈大3岁,女儿比儿子大2岁。5年前,全家所有人的年龄总和是58岁。现在爸爸的年龄是多少岁?

  A.67

  B.32

  C.35

  D.78

  解析:根据5年前全家所有人的年龄和是58岁,可以推出现在全家人的年龄总和应该是58+4×5=78岁。但实际上的年龄总和却是77岁,差了1岁,说明有一个人只长了4岁,这个人只能是儿子(5年前尚未出生)。女儿就应该是4+2=6岁,现在父母的年龄和是77-4-6=67岁,又知他们的年龄差是3岁,可求出爸爸的年龄是(67+3)÷2=35岁。

  例题3:1998年,甲的年龄是乙的年龄的4倍。2002年,甲的年龄是乙的年龄的3倍。问甲、乙二人2000年的年龄分别是多少岁?

  A.34岁,12岁

  B.32岁,8岁

  C.36岁,12岁

  D.34岁,10岁

  解析:设1998年乙的年龄是x岁,那么甲的年龄是4x岁。从1998年到2002年经过了4年,两个人都长了4岁,那么这个时候,甲的年龄是4x+4岁,乙的年龄是x+4岁。由于甲的年龄是乙的3倍,所以,4x+4=3(x+4),x=8。也就是说1998年,乙的年龄是8岁,则2000年的年龄是10岁,直接选择D。

  上面的例题分别是利用直接分析法和方程法来解决年龄问题,想要解决这一类题目,一定要抓住的关键就是年龄差永远不变,通过这个关系就能很好的解决年龄问题,为大家公考数量方面增加相应的分数。
 
\技巧还没掌握?扫码回复“咨询老师”  
\
\
 
\
                                                                                                            扫码关注我们
 

分享到

切换频道